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TRANSIENT RESPONSE OF A PLASTICALLY ANISOTROPIC
CYLINDER IN PLANE STRAINt

THOMAS DUFFEY

Sandia Laboratories, Albuquerque, New Mexico

Abstract-An anisotropic plastic analysis of a long cylinder subjected to internal impulsive pressure loading is
presented, Motion of the thin-walled cylinder is taken as radially symmetric and radia't displacement is assumed
uniform through the thickness. Resulting transient response formulas are expressed in terms of elementary func­
tions. Comparisons between transient deflections for plastically anisotropic and isotropic materials indicate
differences as large as 25 per cent, even when uniaxial material properties are identical along principal directions
in the cylinder reference surface.

NOTATION

a cytinder radius
C parameter defined in equation (9)
Cp plate velocity
E Young's modulus
h cylinder thickness
m slope of approximate yield surface
P, R plastic anisotropy parameters
pit) applied pressure pulse
t time
u nondimensional radial displacement
VQ initial outward radial velocity
w outward radial displacement
X yield strength in rolling direction of textured sheet
Y yield strength transverse to rolling direction
Z yield strength normal to sheet
a ratio of axial to circumferential stress
Ely yield strain in circumferential direction
sf plastic strain rates
S, total strain rate in circumferential direction
K nondimensional initial velocity
;, arbitrary proportionality factor

Poisson's ratio
p mass density
(J I circumferential stress
(J2 axial stress
(J ly yield stress in circumferential direction
(J x principal stress along rolling direction
(Jy principal stress transverse to rolling direction
(Jz principal stress normal to textured sheet
~ nondimensional time
4> yield function

t This work was supported by the United States Atomic Energy Commission and was presented at the Third
Canadian Congress of Applied Mechanics, University of Calgary, Alberta, Canada, May 17-21, 1971.
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1. INTRODUCTION

SEVERAL years ago, Backofen et al. [1] introduced the concept of strengthening certain
engineering metals through controlled plastic anisotropy. Termed "texture hardening",
the concept consists of controlling the crystallographic texture of sheet metal during
deformation processing such that the yield stress in the through-thickness direction is
larger than the yield stresses along the principal axes of anisotropy in the plane of the
sheet. As a result, the ratio of biaxial to uniaxial strength of the plastically anisotropic
sheet is significantly larger than that of a sheet constructed of an isotropic von Mises
material. This concept is particularly applicable to certain lightweight alloys. Specifically,
several investigators [2-4] have shown that various alloys of titanium, such as Ti-5AI-2·5Sn
and Ti-6AI-4V, exhibit a potential for significant texture hardening.

The influence of this initial plastic anisotropy on plane stress problems has been a
subject receiving considerable recent attention in the literature. Budiansky and Wang
[5] present a theoretical study of the Swift cup test and investigate the influence of draw­
ability ofsheet metals on the degree ofanisotropy between thickness and in-plane directions.
Chern and Nemat-Nasser [6] develop a solution for the expansion of a pin-hole in an
infinitely extended, plastically anisotropic disk whose thickness is a function of the radial
coordinate. Solutions are obtained for both Tresa and von Mises yield functions. Bratt
and Adami [7] investigate the influence of initial anisotropy on the reduction of thin-walled
tubes and use a linearized yield condition to obtain solutions. Yang [8] solves a class of
axisymmetric plane stress problems of plastically transversely isotropic and power law
hardening sheet metal materials. Further, the influence of plastic anisotropy or texture
hardening on the static burst strength of spherical and cylindrical pressure vessels has
recently been investigated [9, 10]. However, all references cited above are restricted to
rigid-plastic materials and static pressure loading. Chen has recently developed solutions
for annular plates [11] and tubes [12] constructed of elastic-plastic materials. However,
the work is restricted to static loading and response. The author is unaware of any work on
problems involving plastically anisotropic materials in which the loading is of a dynamic
nature and the transient response is sought.

It is the purpose ofthis paper, then, to evaluate the influence of initial plastic anisotropy
on the response of structures undergoing transient motions. Toward this end, a long
cylindrical shell subjected to an internal impulsive pressure loading is analyzed. The shell
is constructed of an elastic-plastic texture hardened material with a yield condition and
flow rule based on the anisotropic plasticity theory developed by Hill [13]. The analysis
can be considered a generalization of earlier work which accounted for a von Mises
material only [14].

The solution is accomplished by partitioning the entire elastic-plastic transient response
of the uniformly expanding cylinder into a series of phases:
1. The elastic phase, before the stress in any fiber of the cross section reaches the texture­

hardened yield surface;
2. The first plastic phase, during which the circumferential stress in the cross section moves

along the texture-hardened yield surface in stress space;
3. The second plastic phase, during which the stress state remains fixed at an equilibrium

point on the yield surface determined from the flow law for the condition of plane
strain;
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4. The elastic unloading phase, after outward radial motion of the cylinder has ceased
and it begins inward radial motion; in this phase, the entire cross section unloads
elastically.
The resulting formulas describing the transient elastic-plastic response of the long

cylinder are developed in terms of elementary functions. Using the derived formulas, it is
shown for one set of parameters that, compared to an isotropic plastic von Mises material,
peak transient deflections may be reduced by 25 per cent if long cylinders are constructed
of highly texture-hardened (plastically anisotropic) materials.

2. ELASTIC PLASTIC CYLINDER

Assuming radial displacements are uniform through the thickness, and that displace­
ments are small, the equation governing radially symmetric motions of a thin cylindrical
shell, Fig. 1, may be written as:

w

(1)

FIG. 1. Vndeformed state of impulsively loaded cylinder.

where w is outward radial displacement, a is initial cylinder radius, p represents mass
density, h is thickness, p(t) is the applied pressure pulse and 0"1 denotes the circumferential
stress.

Material behavior is assumed to be elastic-perfectly plastic as shown in Fig. 2; the
influence of strain hardening and rate sensitivity are ignored. Yielding and plastic flow
are governed by a "texture hardened" yield surface, as developed in Appendix A. While
the material is plastically anisotropic, it is assumed for simplicity to be isotropic in the
elastic region.
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FIG. 2. Elastic-perfectly plastic material behavior along" I-direction in stress space.

2.1 Elastic phase

The elastic solution with the initial conditions u(o) = 0 and du/dr(o) = VJC p and using
Hooke's law is

u = K sin r r>O (2)

where K = VJC p' u = w/a, r = Cpt/a, Vo is initial outward radial velocity and Cp =
(E/p(l- V2»1/2, the plate velocity. This elastic solution is valid until the circumferential
stress of fibers in the cylinder reaches the yield surface. The cylinder is taken sufficiently
thin so that partial yielding does not occur, i.e. the entire cross section yields at the same
time·t

The biaxial stress behavior of the cylinder is conveniently represented in the (J 1 - (J 2

plane of principal stress space, as shown in Fig. 3. The circumferential stress during this
elastic phase moves from the unstressed point a to point b in Fig. 3, where the anisotropic
plastic yield surface is contacted.

2.2 First plastic phase
Anisotropic plasticity relations useful to this section are developed in Appendix A

in terms of two anisotropy parameters, P and R, since these parameters can be readily
determined by direct measurement. As discussed in Appendix A, P = R = 1 corresponds
to a von Mises material, with no strengthening under balanced biaxial stress; P = R = 5
corresponds to a severely texture-hardened material, with significant strengthening under
biaxial stress. The yield strength in the through-thickness direction is J3 times the strength
in the plane of the sheet.

t The time at which yielding occurs is calculated in equation (18).
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FIG. 3. Locus of the stress state in principal stress space.
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(4)

There are two possibilities analyzed here:
1. The cylindrical axis is aligned with the rolling direction of the textured sheet. In

this case, it is advantageous to utilize the yield condition from equation (A.5) in the form

2 R(1+P) 2 ( 2R ) 2
/1x+ P(1 +R(Y -/1x/1y 1+R = X (3)

to alleviate scaling difficulties when P =1= R. Here, X is the yield strength in the rolling
direction. In this case, direction (1) in the cylinder (circumferential direction) is aligned with
the x-(rolling) direction of the material and direction (2) with the y-direction.

2. The cylindrical axis is aligned transverse to the rolling direction. In this case, the
yield condition is used in the form

P(1 +R) 2 2 ( 2P ) 2
R(l+P(x+/1y -/1x/1 y I+P = Y

where Y is the yield strength in the transverse material direction and where the substitutions
of 2 and 1 may be made for x and y, respectively.

In the analysis which follows, situation (1) will be analyzed in detail. Results for case (2)
can then be obtained simply by interchanging Rand P.

The yield function can be written in terms of shell coordinates as

(5)
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(6)i = 1,2,3.

where CT ly denotes the yield stress in the circumferential direction. From Hill's anisotropic
theory [13], the flow rule is taken of the form

e! = A. ocjJ
I OCT;

The term A. is an arbitrary proportionality factor and ef denotes plastic strain rates defined
for the condition of plane strain, e2 = 0, as

ef = e1- (0"1- VO" 2)/E
(7)

where the quantities e; denote total strain rates. Consider the stress state to be on the texture­
hardened yield surface cjJ = 0 and under a loading condition 4> = O. This loading condition
can be expressed using the chain rule as

or

. ocjJ. ocjJ.
cjJ = 0 = -CT l +-CT2

OCT 1 OCT2

0"2 = O"le
(8)

where

e == OcjJ/OCT l

- OcjJ/OCT2'

For the anisotropic yield condition expressed by equation (5), e becomes

e = P(I+R)-RPa
RP-R(1 +P)a

(9)

where

a = CT2/CTl'

a can be written in terms of the anisotropy parameters and the yield stress obtained by
manipulation of equation (5) to obtain

a = ~-J{(~)2-P(I+R)[I_ (~)2J}
I+P I+P R(I+P) CT l .

(10)

Combining equations (6H8), the dynamic state of stress during plastic flow can be
written as

(11)

where e is obtained from equations (9) and (10).
This nonlinear motion occurs as the stress state, on continued plastic straining, moves

from point b (Fig. 3) along the yield surface toward the "zero velocity" point, point c.
At this point, hereafter denoted as "equilibrium point", the velocity of the stress state
approaches zero (even though there may be continued plastic straining) and the second
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plastic phase begins. Unfortunately, the incremental equations (11) are nonlinear and it
does not appear possible to integrate these relations directly. However, as shown in Fig. 4,
the texture hardened yield surface can be reasonably approximated by a straight linet for
points lying between point b and the equilibrium point c, at least for values of P and R

STRA IGHT SEGMENT
APPROXIMATION {SLOPE' mI

EQUILIBRIUM POINT

ACTUAL YIELD SURFACE! P • R• 51

INlTlAL CONTACT POINT

C"J:/~
y

FIG. 4. Texture-hardened yield surface showing straight line approximation.

which are not excessive. The local yield condition can then be expressed as

(v-m)t1 1

</> = 0 = mCT 1 -
CT

2 + 2vR R(1 ~P) 2 t
1---+ v

1+R P(1 +R)

(12)

where m is the slope of the line connecting the points of intersection of the radial line of
slope v and the radial line to the "equilibrium point" on the yield surface,

-.!-(I+P)(l+R))t(l_ 2vR + R(I+P)v2)t_ v
P+l I+P+R I+R P(I+R)

m - -7":":'-'--~:-:---::-:-r-;--;--'---:::-=--~~""""",::::-"",,,.-'---

- (I+P)(I+R))t(l_ 2vR + R(I+P\2)t_ 1
1+P+R 1+R P(1 +R)

(13)

Using the linearized yield condition, equation (12), with equations (6H8) it can be
shown that the new stress rate expressions become

. Eel
t1 - -.,-,.....---

1 - m2-2mv+l

t A similar linearizing approximation was recently utilized by Bratt and Adami [7).

(14)

(15)
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(16)

Equation (14) can be directly integrated, and the following equation of motion can be
developed from equation (1):

d2u (1- V 2 )
-+ U
d.2 (m 2

- 2mv + 1)

el (1- v2 )(m2
- 2mv +v2

)

where ely is the static yield strain in uniaxial tension in the circumferential (transverse)
direction.

The initial conditions on the motion during this first plastic phase are

(
2vR R(l+P) 2)t

1---+ v
I+R P(I+R)

(17)

where. 1 , the time at which the elastic phase ceases, can be determined as

The solution of equations (16) and (17) is given by

(18)

U=
ely 2

[ J
' [m - 2mv + I]

2vR R(l +P) 2 '
I--~+ v

I +R P(1 +R)

(19)

[I
2vR R(I+P) 2Jt.---+ v
I +R P(I+R)

Equation (19) is valid until the circumferential stress in the cylinder reaches the equili­
brium point c in Fig. 4.t

t Should outward motion cease before this equilibrium point is reached due to insufficient initial loading, then
elastic unloading of the cylinder will occur from some point on the linearized yield surface between band c. This
possibility occurs for

B2 _A 2 +D2 < 0

where A, Band D are defined after equation (22). A detailed analysis of this possibility is contained in Appendix B.
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2.3 Second plastic phase
Equation (5) can be used to obtain the circumferential stress at the equilibrium point c

(also the point of maximum stress) as
(I+P)(I+R)

(U1)max=u1y-T+p+R . (20)

Using this relation, the deflection (or strain at the cylinder midsurface) can be determined
when the stress equilibrium point is just reached as

-. [2_ 2 1)(I+P)(I+R»)! _ (m
2
-2mv+v

2
) 'J

U2-
8
1y (m mv+ I+P+R (2VR R(I+P)2)t

1---+ v
1+R P(1 +R)

(21)

The time at which the equilibrium point is reached can be shown by combining equations
(9) and (21) to be

where

(m 2-2mv+l)t
r2 = 'II + (l-v2)!

arcsin {(D 2 ~ B2 )[AD- B(B2
- A2 +D2 )t]}

(
1+P)(1 +R»)t 2A = 8 1 ------- (m -2mv+ 1)

y I+P+R

(22)

(23)

determined from

8 1y ( 2 2 1B=( 2vR R(I+P) 2)t m
- mv+)

1---+---v
1+ R P(1 +R)

K cos 'I l(m 2
- 2mv+ 1)t

D = (1 v2yt .

After time,2' the stress state remains fixed at the equilibrium point until elastic un­
loading occurs. During this subsequent plasticity phase, the circumferential stress is
constant and the equation of motion becomes

d
2
u ,(1- V2)[0 +P)(I +~]J = 0

dr 2 +81 y 1+P+R .

The solution [with initial conditions u(rz) U z and dujdr(r2) = u~

equations (19) and (22)] is

(
,E1 U- VZ )[(1+P)(1+R)]J( )Z

U = u2+ r-Tz)uz---
Y 2 l+P+R ,-1:'z

(24)

This solution is applicable until outward motion ceases. This time is found from equation
(24) as

(25)
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2.4 Elastic unloading phase

In the elastic unloading phase, the cylinder unloads elastically from the final state
(equilibrium point) on the yield surface along a line of slope v. Inward motion is governed
by

d
2
u+ u+ e (1_V2)[(I+P)(I+R)]t_ u =0.

dr2 1, 1+P+R 3

The solution [with initial conditions u(r3) = U 3 and dujdr(r3) = 0
equations (24) and (25)] is given by

[
(1 +P)(I +R)J t

u=e 1,(I-v
2

) 1 (cos(r-!3)-I)+u3
+P+R

(26)

determined from

(27)

This solution is applicable until the stress state contacts the yield surface again.

3. DISCUSSION

To summarize, the transient response of the uniformly expanding long cylinder has
been divided into the following phases.

1. The initial elastic phase, before any fibers in the cross section have reached the yield
surface. During this phase, the stress state at some location in the cross section proceeds
from the origin of stress space (point a, Fig. 4) along a-b until the yield surface is contacted
at point b.

2. The fully plastic phase, during which the stress state moves along the yield surface
in some nonlinear manner (here a straight line linearizing approximation was taken to
obtain a solution). The motion of the stress state in this phase is between points band c
of Fig. 4. Should outward motion of the cylinder cease before point c is reached, elastic
unloading will occur, say from some point d, along a line with slope equal to Poisson's
ratio. However, if point c is reached, the stress state remains there during a second fully
plastic phase until outward cylinder motion has stopped.

3. The elastic unloading phase, in which the stress state at some location in the cross
section unloads elastically from point c of Fig. 4 along a line of slope v and inward motion
begins. Solutions presented in the preceding section are valid until the yield surface is
subsequently contacted.

The influence of texture hardening on transient cylinder response is shown in Fig. 5
for the set ofparameters indicated on the figure. It is seen that the influence ofthe anisotropy
parameter (for P = R) is indeed significant. In particular, peak deflection for the (plastically)
"transversely isotropic" situation represented by P = R = 5t is reduced by more than
25 per cent compared to the isotropic von Mises case (P = R = 1) for identical uniaxial
yield stresses.

It is also shown in Fig. 5 that differences in response between rings (uniaxial stress)
and long cylinders (plane strain) for the same uniaxial yield stress become even more
pronounced than reported earlier [14] as the degree of plastic anisotropy is increased.

t This degree of texture hardening was chosen as a reasonable upper limit for purposes of comparison. Aniso­
tropy values of this magnitude have been reported by several investigators [1,3].
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FIG. 5. Influence of texture hardening on transient cylinder response.

Transient deflections are plotted in Fig. 6 for a highly texture-hardened material.
Deflections are plotted for two values of Poisson's ratio. It is seen that deflections are some­
what dependent on Poisson's ratio, at least for large values of the anisotropy parameters.

4. CONCLUSIONS

In this paper, the influence of plastically anisotropic material behavior on the transient
response of a long cylindrical shell subjected to impulsive loading has been investigated.

N
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II- 0.0

2 3
NONDIMENSIONAL TIME, T-ctla. co lE/p)112

FIG. 6. Effect of Poisson's ratio on transient response of a texture-hardened cylinder.
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Formulas for the transient radial deflections of the cylinder are developed in terms of
elementary functions, and the following conclusions are drawn from numerical examples
based on these formulas:

1. The biaxial strengthening of materials exhibiting extreme "texture hardening"
behavior is found to reduce peak deflections of a long, uniformly loaded tube by 25 per cent
compared to isotropically plastic response.

2. Differences in response between rings (uniaxial stress) and long cylinders (plane
strain) become more pronounced as the degree of plastic anisotropy is increased.

3. Cylinder deflections are found to be somewhat dependent upon Poisson's ratio for
large values of the plastic anisotropy parameters.
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APPENDIX A

Most of the resulting anisotropic plastic relations developed in this appendix have been
presented by others. The derivations are presented here for completeness.

Hill's [13] anisotropic yield criterion can be written for a state of plane stress (0'= = 0)
and in terms of principal stresses as

O'~ a; I [1 1 1]
X 2+y2- X 2+y2-Z2 O'xO'y = 1 (A])

where X, y, Z denote, respectively, the uniaxial yield stresses along the Cartesian x, y and
z axes, the principal axes of anisotropy. It is assumed that the x- and y-axes lie in the plane
of a thin sheet of texture-hardened metal and that the z-axis is normal to the plane of the
sheet. The x-axis is taken to be parallel to the rolling direction and the y-axis transverse to
the rolling direction.
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Since direct measurement of Z is difficult for thin sheets, it is convenient to rewrite
equation (A.l) in terms of material constants which can be. determined by direct measure­
ment. Two such anisotropy parameters are P and R, defined as follows:

P = dex/dez I

R = dey/dezl
(A.2)

ay = az = o.
The parameters P and R are determined by measuring the incremental width-to-thickness
strains in coupons subjected, respectively, to uniaxial stress along the y- and x-directions.

From Hill [13J the stress-strain increment equations, determined by applying the flow
rule to the yield condition, can be reduced to

[
ax ay{ 1 II}]

dex = dA. XZ -2 XZ + yZ - ZZ

[
ay ax{ 1 II}]dey = dA. yZ -2 XZ + yZ - ZZ

de = dA. [_ ax{_I+_1__I} _ ay{_1 +_1__1 }].
z 2 ZZ X Z yZ 2 yZ ZZ X Z

Equations (A.2) and (A.3) can be combined to obtain

{;z+ :z-;z}
P = +:-----:---,--.;;-

{:z+dz- ;z}
and

(A.3)

(AA)

(A.5)

{~+~-~}
R ~ {;,+;,~~,}

Using equation (AA), equation (A.l) can be written in two equivalent expressions, both
of which are useful in the analysis in the elastic-plastic cylinder section:

P(l +R) z z (2P ) z
R( 1+ P) ax + ay - axa

y 1+ P = Y

z R(l +P) z ( 2R ) 2
ax + P(l +R(Y -axay 1+R = X .

The influence of the anisotropy parameters, P and R, on the yield condition is indicated
in Fig. 7. It is seen that for P = R, corresponding to a "transversely isotropic" material in
which X = y, the yield surface undergoes elongation under biaxial stress and retains
symmetry about the dashed ax = a y line. P = R = 1corresponds to the isotropic von Mises
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FIG. 7. Influence of anisotropy parameters on yield surface.

ellipse, while larger equal values of P and R indicate increased texture hardening. It is seen
that for balanced biaxial tension, the yield strength for P = R = 5 is nearly double that of
the isotropic von Mises situation which exhibits no biaxial strengthening for balanced
biaxial tension.

The situation P # R (orthotropic material) is also included in Fig. 7 where it can be
seen that unequal values of P and R correspond to a rotation of the yield surface away from
the ax = ay line of symmetry.

APPENDIX B

The possibility of elastic unloading before reaching the equilibrium point c in Fig. 4 is
considered here.

The time at which outward motion ceases can be found from equation (19) as

(m 2 -2mv+ l)t
r2=r 1 + (l-v2)t

[

1 2vR R(1 +P) 2 t ]
K -T+R+P(I+R)V cosr 1

arctan e
1
,(l-v2 )t[m2 -2mv+l]t. (B.1)

At this time, the cylinder begins inward motion and unloads elastically along a line of
slope v. From Hooke's law and equation (1), the equation of motion becomes

d
2
u ( e (1- v

2
) )

dr2 +u+ U
2 -{I_ 2V~'+R(I+P)v2 }!

I+R P(I+R)
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(B.3)

where U2 is given by equation (19) for r = r2' The solution with initial conditions u(r2) = U2
and duldr(r2 ) = 0 is

[ (
Ilti1-V2»)( (1_y2)

U = U2+ U
2 -{1_ 2vR +R(1+P)y2}t (m2-2mv+l)

1+R P(1 +R)

IlIP - v
2

) ) (1
{
l- 2vR +R(1+P)v2}t

1+R p(l+R)

This solution is applicable until the stress state contacts the yield surface again in either
second or third quadrant of principal stress space.
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A6cTJlllKT-B 06JIaCTH aHH30TponHoA TeopHH nJIaCTH'lHOCTH .!1aeTCll aHaJIH3 .!1Jlll ,nJlHHHOrO l.\HJIHHJl.pa,
nO.!1BeplKeHHoro Jl.eACTBHIO HMnYJlbCHBHOA BHYTpeHHoA HarpYJKH .!1aBJleHHll. Y'lHTHBaeTcll p,Bl'IlKeHHe
TOHKOCTeHHoro l.\HJlIIHJl.pa KaK pa,nllaJIbHO-CIiM-MeTpll'leCKoe. npeJl.JlOJlaraeTCll pap,lIaJIbHOe nepeMe~eHHe

nOCTOllHHoe CKBOJb TOJl~HHY. OnpeJl.eJllllOTCll CYMMapHble 4>OPMYJlbl nepeXOJl.HblX xapaKTepHcTHK B BHJl.e
3JleMeHTapHblx 4>YHKl.\MA. CpaBHeHHll MelK.!1Y nepeXOJl.HblMH nporH6aMH ,nnll nnaCTH'leCKH aHH30TponHblX H
H30TponHblx MaTepHaJlOB YKa3blBalOT paJHHl.\M Bblwe 25%, Jl.alKe .!1Jlll CJlY'lall Kor,na COOCHbie cBoAcTBa
MaTepHana OJl.HHaKOBble B,nOJlll rJlaBHblX HanpaBJleHHA, B OTHOCHTeJIbHOA noaepXHOCTH l.\HJIHH.!1pa.


